64-Position OTP I ${ }^{2} \mathrm{C}$ Compatible Digital Potentiometer

Preliminary Technical Data

 AD5171
FEATURES

- Set \& Forget One Time Programmable Wiper Set
- 64 Position
- End-to-End Resistance 5k, 10k, 50k, 100k Ω
- Compact SOT23-8 (2.9 x 3mm) Package
- $\quad I^{2} C$ interface
- Full Read/write of wiper register
- Extra Package address decode pin A0
- Power ON Reset to Midscale
- $\quad I_{D D} \sim 0.01 \mu \mathrm{~A}$
- Single Supply +2.7V to +5.5V
- Low Temperature Coefficient 35 ppm $/{ }^{\circ} \mathrm{C}$
- Wide Operating Temperature $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Applications

- Permanent Factory PCB Setting
- Resistor Adjustment \& Final Set
- Replacement of Trimmers ${ }^{\circledR}$ in new designs
- Pressure, Temperature, Position, Chemical and Optical Sensor Calibration
- RF Amplifier biasing
- Automotive Electronics Adjustment
- Gain Control and Offset Adjustment

GENERAL DESCRIPTION

The AD5171 provides a compact $2.9 \times 3 \mathrm{~mm}$ packaged solution for 64 position OTP adjustment applications. This device performs the same electronic adjustment function as a mechanical trimmer ${ }^{\circledR}$ or a variable resistor. Available in four different end-to-end resistance values ($5 \mathrm{k}, 10 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k} \Omega$) these low temperature coefficient devices are ideal for high accuracy and stability variable resistance adjustments.
These devices will provide variable resistance under 2-wire $I^{2} \mathrm{C}$ compatible program control in servo adjustment factory applications. Once the final value is determined. The user programs a permanent write command freezing the wiper position at the desired setting (analogous to placing epoxy on a mechanical

Notes:

1. The terms digital potentiometers, VR, and RDAC are used interchangeably.
trimmer). This one time program sets a validation bit, which can be read through the $\mathrm{I}^{2} \mathrm{C}$ interface. Once this acknowledge bit is set the wiper position can not be changed due to power supply sequencing, temperature, RF fields, ESD exposure, when maintained within its absolute maximum ratings. For applications that require continuous infrequent adjustment of wiper resistance settings, see the AD523x/AD525x families of nonvolatile memory digital potentiometers.
Operating from a 2.7 to 5.5 volt power supply consuming less than 1uA allows for usage in portable battery operated applications.

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

AD5171 ELECTRICAL CHARACTERISTICS 5K, 10K, 50K, 100K Ω VERSION $\left(V_{D D}=+5 \mathrm{~V} \pm 10 \%\right.$, or

 $+3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{A}}=+\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$ unless otherwise noted.)

64 Position Digital Potentiometer

AD5171 ELECTRICAL CHARACTERISTICS 5K, 10K, 50K, 100K Ω VERSION $\left(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%\right.$, or						
$+3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{A}}=+\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V},-40^{\circ} \mathrm{C}$ Parameter	$<\mathrm{T}_{\mathrm{A}}<+1$ Symbol	${ }^{\circ} \mathrm{C}$ unless otherwise noted.) Conditions	Min	Typ ${ }^{1}$	Max	Units
INTERFACE TIMING CHARACTERISTICS applies to all parts(Notes 6,12)						
SCL Clock Frequency	$\mathrm{f}_{\mathrm{SCL}}$				400	KHz
$\mathrm{t}_{\text {BUF }}$ Bus free time between STOP \& START	t1		1.3			$\mu \mathrm{s}$
$t_{\text {HD; }}$ STA ${ }^{\text {Hold Time (repeated START) }}$	t2	After this period the first clock pulse is generated	0.6			$\mu \mathrm{s}$
tow Low Period of SCL Clock	t3		1.3			$\mu \mathrm{s}$
$t_{\text {HIGH }}$ High Period of SCL Clock	t4		0.6		50	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ STA Setup Time For START Condition	t5		0.6			$\mu \mathrm{s}$
$t_{\text {HD; DAT }}$ Data Hold Time	t6				0.9	$\mu \mathrm{s}$
$t_{\text {Su;DAT }}$ Data Setup Time	t7		100			ns
t_{F} Fall Time of both SDA \& SCL signals	t8				300	ns
t_{R} Rise Time of both SDA \& SCL signals	t9				300	ns
$\mathrm{t}_{\text {Su; }}$ Sto Setup time for STOP Condition	t10		0.6			$\mu \mathrm{s}$

NOTES:

1. Typicals represent average readings at $+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{D D}=+5 \mathrm{~V}$.
2. Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic.
3. $\quad V_{A B}=V_{D D}$, Wiper $\left(V_{W}\right)=$ No connect
4. $I N L$ and $D N L$ are measured at V_{W} with the RDAC configured as a potentiometer divider similar to a voltage output D / A converter. $V A=V_{D D}$ and $V_{B}=0 V$. DNL specification limits of ± 1 LSB maximum are Guaranteed Monotonic operating conditions.
5. Resistor terminals A, B, W have no limitations on polarity with respect to each other.
6. Guaranteed by design and not subject to production test.
7. Measured at the A terminal. A terminal is open circuited in shutdown mode.
8. PDISS is calculated from (IDD $\times V_{D D}$). CMOS logic level inputs result in minimum power dissipation
9. All dynamic characteristics use $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$.
10. See timing diagram for location of measured values. All input control voltages are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2 \mathrm{~ns}(10 \%$ to 90% of $+3 \mathrm{~V})$ and timed from a voltage level of 1.5 V . Switching characteristics are measured using $\mathrm{V}_{\text {LOGIC }}=+5 \mathrm{~V}$.
11. The AD5171 contains $x x x x$ transistors. Die Size: 30.7 mil $\times 76.8$ mil, 2358 sq. mil.
12. See timing diagram for location of measured values.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD5171 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended
 to avoid performance degradation or loss of functionality.
$V_{D D}$ to $G N D$... $-0.3,+7 V$
V_{A}, V_{B}, V_{W} to $G N D$... $V_{D D}$
$I_{\text {MAX }}$.. $\pm 20 \mathrm{~mA}^{2}$
Digital Inputs \& Output Voltage to GND.............. $\mathrm{OV},+7 \mathrm{~V}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature ($\mathrm{T}_{\mathrm{Jmax}}$)............. $+150^{\circ} \mathrm{C}$
Storage Temperature........................... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Thermal Resistance ${ }^{3} \theta_{\mathrm{JA}}$,
SOT23-8 .. 230 C / W

NOTES

1. Stresses above those listed under Absolute Maximum Ratings may cause permanent
damage to the device. This is a stress rating; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. Maximum terminal current is bounded by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance
3. Package Power Dissipation $\left(T_{\text {Jmax }}-T_{A}\right) / \theta_{J A}$

ORDERING GUIDE

Model\#	R (Ω)	Package Description	Package Option	Brand
AD5171BRJ5	5 K	SOT23-8	RJ-8	D 12
AD5171BRJ10	10 K	SOT23-8	RJ-8	D 13
AD5171BRJ50	50 K	SOT23-8	RJ-8	D 14
AD5171BRJ100	100 K	SOT23-8	RJ-8	D 15

64 Position Digital Potentiometer

Write Mode:

Read Mode:

$\mathbf{S}=$ Start Condition	RS $=$ Reset wiper to Midscale 20_{H}
$\mathbf{P}=$ Stop Condition	SD $=$ Shutdown connects wiper to B terminal and open circuits A
$\mathbf{A}=$ Acknowledge	terminal. It does not change contents of wiper register.
$\mathbf{X}=$ Don't Care	$\mathbf{D 5}, \mathbf{D 4}, \mathbf{D 3}, \mathbf{D 2}, \mathbf{D 1}, \mathbf{D 0}=$ Data Bits

$\mathbf{W}=$ Write
$\mathbf{R}=$ Read

Figure 1. Detail Timing Diagram

Figure 2a. Writing to the RDAC Register

Figure 2b. Activating One Time Programming

Figure 3. Reading Data from a Previously Selected RDAC Register in Write Mode

64 Position Digital Potentiometer
TABLE 1: AD5171 PIN Descriptions

Pin	Name	Description
1	W	W Terminal
2	VDD	Positive Power Supply
3	GND	Ground Serial Clock Input, positive edge 4
	SCL	triggered
5	SDA	Serial Data Input/Output
6	AO	Programmable address bit 0 for multiple package decoding
7	B	B Terminal
8	A	A Terminal

OUTLINE DIMENSIONS
Dimensions shown in inches and (millimeters)
8-Lead Plastic Surface Mount Package
(RT-8)

